Raman spectra from Symmetric Hydrogen Bonds in Water by High-intensity Laser-induced Breakdown

نویسندگان

  • Zhiwei Men
  • Wenhui Fang
  • Dongfei Li
  • Zhanlong Li
  • Chenglin Sun
چکیده

Raman spectra of ice VII and X were investigated using strong plasma shockwave generated by laser-induced breakdown (LIB) in liquid water. Simultaneously, the occurrence of the hydrogen emission lines of 656 nm (Hα), 486 nm (Hβ), 434 nm (Hγ) and 410 nm (Hδ) was observed. At 5 × 10(12) W/cm(2) optical power density, the O-H symmetric stretching, translational and librational modes of ice VII and a single peak at 785 cm(-1) appeared in the spectra. The band was assigned to the Raman-active O-O mode of the monomolecular phase, which was the symmetric hydrogen bond of cuprite ice X. The spectra indicated that ice VII and X structure were formed, as the trajectory of the strong plasma shockwave passes through the stable Pressure-Temperature range of ice VII and X. The shockwave temperature and pressure were calculated by the Grüneisen model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical Opacity of Laser Induced Plasma in Distilled Water with NaCl and TiO2 Nanoparticles Impurities

In this paper, the dynamic behavior of laser induced optical breakdown in impure water was studied by using a pump- probe technique. The plasma was induced by a 1064 nm Nd:YAG laser pulse (with pulse duration ~10 ns) in distilled water with two types of impurities: (I) a solution (highly diluted salt water as a conductor) and (II) a colloidal (TiO2 in colloidal nanoparticle form as a dielectric...

متن کامل

Laser Induced Plasmas in Liquid Water: From Single Pulse Breakdown to Repetitive Breakdown

Optical breakdown in water created by 10ns pulsed Nd:YAG laser operating at λ=1064 nm was studied. Spatial and temporal information was obtained with two intensified CCD cameras while spectral data were recorded using a time-integrating spectrometer. We have studied three water samples with different impurity content (ultrapure, distilled, and tap water) and followed the plasma evolution over a...

متن کامل

High viscosity of imidazolium ionic liquids with the hydrogen sulfate anion: a Raman spectroscopy study.

Ionic liquids based on 1-alkyl-3-methylimidazolium cations and the hydrogen sulfate (or bisulfate) anion, HSO(4)(-), are much more viscous than ionic liquids with alkyl sulfates, RSO(4)(-). The structural origin of the high viscosity of HSO(4)(-) ionic liquids is unraveled from detailed comparison of the anion Raman bands in 1-ethyl-3-methylimidazolium hydrogen sulfate and 1-butyl-3-methylimida...

متن کامل

Structural Modification of Single-Layer Graphene Under Laser Irradiation Featured by Micro-Raman Spectroscopy

Confocal micro-Raman spectroscopy is used as a sensitive tool to study the nature of laser-induced defects in single-layer graphene. Appearance and drastic intensity increase of D- and D' modes in the Raman spectra at high power of laser irradiation is related to generation of structural defects. Time- and power-dependent evolution of Raman spectra is studied. The dependence of relative intensi...

متن کامل

Pressure-induced hydrogen bond symmetrization in iron oxyhydroxide.

Under high pressures the hydrogen bonds were predicted to transform from a highly asymmetric soft O-H···O to a symmetric rigid configuration in which the proton lies midway between the two oxygen atoms. Despite four decades of research on hydroxyl containing compounds, pressure induced hydrogen bond symmetrization remains elusive. Following single crystal x-ray diffraction, Mössbauer and Raman ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014